Skip to end of metadata
Go to start of metadata

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 2 Next »

What is Flex Fuel?

Flex Fuel refers to a system which allows the user to utilize fuel with varying percentages of ethanol. Allowing the vehicles fuel choice to be “Flexible”. This means that without needing to flash a map the car is capable of running and compensating for those varying percentages with no loss of driveability, and typically a performance bump of some kind.

While there are many different ways of establishing and compensating for ethanol content, the COBB system is setup to utilise an added OEM quality ethanol content sensor to provide ethanol content to the ECU so that the ECU can utilise several custom tables to optimize it’s behavior for power and driveability.

When tuning for ethanol there two different things you’re tuning for.

  • Adjustments to Engine Parameters for proper operation

    • This usually involves making adjustments to fueling, and cranking. This is relatively easy to get close as the relationship between ethanol and gasoline is quite linear. Some basic math (or using some existing reference material) will get you quite close in a hurry. Adjusting fueling to account for the increase volume of fuel needed without going too rich, and making sure the car has enough fuel when cranking and cold are your primary goals.

  • Adjustments for performance.

    • Ethanol has a higher effective octane rating (resistance to ignition/knock) and is much better at absorbing heat from the air. This means that you can typically run either more boost, more aggressive ignition timing, or a combination of both, while meeting the same safety margin you had with gasoline.

Ethanol Content and Soichiometric Ratio

While there are many good things about ethanol, the fuel quantity isn’t necessarily one of them. Ethanol typically performs ~27% less work than gasoline and has an ideal mixing rate of 9.8:1 versus the 14.7:1 of Gasoline. As Ethanol content rises, and the quantity needed by the fuel system to maintain stoich. rises proportionally, the demand on the fuel system increases. This increased demand means your fuel injectors and fuel pump will typically be working harder or be maxed out in some cases if the power demand gets high enough.

If transitioning from 0% Ethanol to 100% ethanol ~63% more fuel mass will be required. (This is uncommon as 0% ethanol isn’t recommended for most vehicles and most available pump E85 will be 70-85%)

If transitioning from 10% ethanol to 85% ethanol ~43% more fuel mass is required.

Ethanol Content

Stoich. Ratio

Multiplier (E0)

Percentage (E0)

Multiplier (E10)

Percentage (E10)

0%

14.700

1.000

100.0%

0.961

96.1%

10%

14.131

1.040

104.0%

1.000

100.0%

20%

13.562

1.084

108.4%

1.042

104.2%

30%

12.992

1.131

113.1%

1.088

108.8%

40%

12.423

1.183

118.3%

1.137

113.7%

50%

11.854

1.240

124.0%

1.192

119.2%

60%

11.285

1.303

130.3%

1.252

125.2%

70%

10.715

1.372

137.2%

1.319

131.9%

80%

10.146

1.449

144.9%

1.393

139.3%

85%

9.862

1.491

149.1%

1.433

143.3%

90%

9.577

1.535

153.5%

1.475

147.5%

98%

9.122

1.612

161.2%

1.549

154.9%

100%

9.008

1.632

163.2%

1.569

156.9%

Exact stoichiometric ratio will depend on the exact mix of chemicals used to formulate the gasoline portion of the fuel.

Keep in mind air/fuel ratio targets in the software (and most external wideband gauges) are displayed on a gas scale. In order to avoid confusion it can help to work in lambda. This can be especially useful when fuel chemistry is variable.

The table above provides some of the basic math for determining the stoichiometric ratio of your current fuel, as well as the percentage increase/decrease of fuel mass versus e0 and e10.

Error rendering macro 'excerpt-include' : No link could be created for 'subaru ej recommended'.
  • No labels